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ADbstracts

Based on the elastic network model, we develop a novel method ttatptbe conformational
change of a protein complex given its initial state crygtalctire together with a small set of
pair-wise distance constraints for the end state. The predioctédrmational change, which is a
linear combination of multiple low frequency normal modes thatsateed from the elastic
network model, is computed as a response displacement induced thyrbgien to the system
Hamiltonian that incorporates the given distance constraints. lsirad test cases, we find that
the computed response displacement overlaps significantly with theunee conformational
changes, when only a handful of pair-wise constraints are g4€)l. (The performance of this
method is also shown to be robust against different choices of Eareigtance constraints and
errors in their values. This method, if supplied with the experifigntierived distance
constraints (for example, from NMR or other spectroscopic measuatsjncan be applied to the
analysis of protein conformational changes toward transient states.



| ntroduction

Quantitatively correct description of conformational changes ngraleto the understanding of
functional mechanisms for many bio-molecular complexes. Such déstrifg routinely
obtained by doing structural comparison between the two crystatiges solved for the initial
state and the end state, respectively. In case that only tia¢ stette crystal structure is known,
computational prediction of the conformational changes is highlyaddsi However, simulating
the conformational changes with atomic details is made diffipuits requirement of long time
simulation up tous ~ ms time scale. Recent work by a number of researchersulggested
another computational route that avoids this difficulty: the lowesjefency normal modes that
are computed from a highly simplified elastic network model (EN#dh give surprisingly good
description of the functionally relevant dynamics of macromoleculaemsgs{Atilgan et al., 2001,
Isin et al., 2002, Keskin et al., 2002, Kim et al., 2002, Kundu and Jernigan, 2064 aXu2003,
Zheng and Brooks, 2005). Many biologically interesting dynamieaisttions were found to be
dominated by just a handful of lowest-frequency normal modes (i2ebard Sanejouan@002,
Tama and Sanejouanéd001, Zheng and Doniach, 2003). However, without knowing both the
initial and the end structures in the first place, it is slilisive to pinpoint the relevant modes
from the low-frequency spectrum: in many cases, the most relevade may not be the lowest-
frequency mode; sometimes two or more modes are almost eqelalamt. Therefore, it is
desirable to ‘predict’ the conformational change by computing arioembination of multiple
low frequency normal modes as a good approximation. To achievaskiswe need additional
structural information about the end state in addition to the ciststedture for the initial state. In
a recent study (Tama et al., 2004), Tama and coworkers used adorebmation of low-
frequency normal modes for flexible fitting of high-resolutiorustiires into low-resolution
maps of macromolecular complexes from electron microscopy. Here wereekpe possibility of
using another kind of experimental constraitsa small set of pair-wise distance constraints as
a guide to probe protein conformational changes.

Experimentally, pair-wise distances between specified atonaspobtein in its native state (in
solution) can be obtained by nuclear magnetic resonance (NMBYe &he other techniques that
utilize fast spectroscopy (for example: site-direct spin liapecombined with electron
paramagnetic resonance spectroscopy, see Hubbell et al., 2000pecppir-wise distances of a
protein in a transient state. Computationally, it has been well knoatreven a small number of
pair-wise distance constraints can improve the protein structodeling significantly (Skolnick
et al. 1997, Debe et al.,, 1999). In the framework of ENM, since functiomalBvant
conformational changes generally involve a small number of low-dregunormal modes, it is
natural to expect that a small number of pair-wise distanceraonst if chosen properly, would
be sufficient for obtaining a good approximation to the conformational changes.

Technically, in the framework of NMA the distance constratais be either enforced directly as
‘hard’ constraints or incorporated indirectly as ‘soft’ constraints:

1. The ‘hard’ constraints are enforced by first linearizing ¢bastraints at the lowest order
perturbation and then solving the resulting linear equations (sebot)e for N pair-wise
distance constraints, a linear combination of the N or more lowagié¢ncy normal modes is
solved to satisfy them. Although this method appears to be matbaltlyasound, it lacks
physical basis because the N low-frequency modes are tregtedlyeregardless of their
differences in frequency.



2. The '‘soft’ constraints can be incorporated into a quadratic pertumb&di the system
Hamiltonian, and then the response displacement is computed (see Mé&thedphysical
essence of this method is: by exerting forces to the feweohpairs of residues to force them to
approach the desired distance constraints, such local perturbatmopagated to the whole
structure to eventually induce global conformational changes whiclbial@gically relevant
(Zheng and Doniach, 2003). The above perturbation may be physicaiy dfor example due
to ligand binding or interaction with other proteins (such an inhibitarjngared with the *hard’
constraints based method, this method employs the linear-responsetti@anaturally favors
lower frequency over higher frequency modes (see Method).

We will use the above ‘soft’ constraints based method to computdgiopetdict the
conformational changes. We will test this method on a list of ¢cases to evaluate its
performance in terms of both accuracy and robustness.



M aterials and M ethods
1. Elastic network model:

Given the G atomic coordinates for a protein’s native structure, we buildlasti@ network
model by using a harmonic potential with a single force constardctount for pair-wise
interactions between all,Catoms that are within a cutoff distance-R0A). The energy in the
elastic network representation of a protein is:
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where ¢ is the distance between the dynamical coordinates oftlao@hsi andj, and d; is the
distance between &atoms andj, as given in the crystal structure.

—%F, (1)

For the above harmonic Hamiltonian we can perform the standard nmowdak analysis (NMA),
and using the eigenvectors of the lowest frequency normal modetin(sfrom mode #1 after
excluding the 6 zero modes for translations and rotations) we cgrut®mhe overlaps with the
conformational changes between two states with known structunesdzand Doniach, 2003).
The drastic simplification of representing the complex pragguncture by an effective harmonic
potential is justified by a study (Tiron, 1996) which showed that dessmying constant potential
reproduces the slow dynamics that is computed from the normal raodkysis of a complex all-
atom potential.

We note that the cutoff distanceR0A is selected as a trade-off between the following two
considerations: first, Rshould be large enough to avoid additional zero modes besides the 6
rotational and translational modes; secong,sRould be small enough to avoid introducing too
much non-physical long-range interaction. In practice, we find a&inmésults for slightly
different cutoff distances (data not shown).

2. Predict conformational changes from distance constraints

Motivation

Assume we have the 3d coordinates of the initial protein strietGgeatoms, and N pair-wise
distance constraints for the unknown end structure. The goal is to tpiteeliconformational
change from the initial structure to the end structure. Hereliwg our attention to the
directionality of the conformational change (a 3L dimensionalovewhere L is the length of
sequence) but not its amplitude.

There are two different ways to achieve this goal:

a. Hard distance constraints:

One can use the linear combination of M lowest-frequency modesisfysN linearized pair-
wise distance constraints.(jn) (n=1, 2..N):
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is the change of the pair-wise distance far I ) derived from the

In order to satisfy N independent constraints as in Eq (2), M shoutw bess than N. If N is
equal to M, there is only one solution to Eq (2); when M>N, there will be multiple solutions

Our tests have showeHbat the direct satisfaction of the ‘hard’ distance constrgivitdN) often
results in poor overlap between the computed displacement by Eq (2)eanmtasured one (see
Table 2).

b. Soft distance constraints:

We incorporate the constraints into a perturbation to the Hamiltoarah,then compute the
response displacement induced by this perturbation. Details are shown as follows.

First, we introduce N pair-wise distance constrainisif) (n=1,2...N) as a perturbation to the
Hamiltonian of the elastic network:
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where the perturbational Hessian maﬁ‘rhkand the force vect@F are computed as follows:
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where — :Z(aR win)” is the inverse of the “effective” spring constaat pair (in.jn) in
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the old structure @, the eigenvalue of mode dR™; ;, : the perturbational change of the pair-

nrjn "
wise distance forig.in) caused by the eigenvector of mode &k)gives the overall amplitude of
the perturbationy, , ™ (v, , °®) is the pair-wise distance for paifa(in) in the end (initial)

structure.



Second, the response displacemerihduced by the above perturbatiodiE() at ' order
approximation is computed as follows:
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where H is the Hessian matrix for the unperturbed ENM. pimctice, we find: ¥ order
approximation & = -H,'dF ) is generally as accurate d¥ arder (adding % order term makes

little difference). The factor of §f favors low-frequency modes in their contributionx.

It is straightforward to verify the following: undeghe assumption of linear response, the
contribution to the energy perturbation in Eq (@)nfi each individual pair-wise constraint, by

itself, results in the change of that pair-wisdatse that satisfies the constraint perturbatignall

However, when all contributions are added up, noindose constraints are satisfied any more.
So the basic assumption is: every pair-wise coinstigan be enforced by a pair-wise force
applying on that particular pair ‘independentlyhdathe inter-pair interference can be ignored
(for example, one can ignore the change in thewsie distance for pair 2 caused by the forces

applied on pair 1). The inter-pair interference d¢e@ntaken into account by tuning th,;é'jn as

variables to satisfy the constraints exactly ancamadiile minimize the energy in Eq (5).
However, our test of such alternative method (datashown) showed, surprisingly, significantly
degraded performance. We suspect that the intelirgarferences are probably much weaker in
real proteins than described by the ENM.

The response displacement as computed above isagssatapproximation to the conformational
change. Its accuracy can be assessed by calcuiatiogerlap with the measured conformational
change (generalized Cosine between these two sedee Tama and Sanejouand, 2001): the
higher the overlap is, the more accurate the ptiediavill be.

3. Criteriafor selecting residue pairs:

Pair-wise distance constraints can be experimgntatrieved by a variety of techniques.
Intuitively, only residue pairs with significant ahge of distanced@=r"'-r ®*) during the

transition will be useful for predicting the confmational changes. Therefore the selection
criteria are needed before the method can be tested for the purpose of testing cases for
which both crystal structures are known, we usddhewing criteria:

I The pair-wise distance jumps across the cutidfadce 10A during the transition,
which results in breaking of an old bond of sprorggeneration of a new bond of
spring in the elastic network;

il. There is relatively significant change in thaipwise distance &{l|) during the

= Mand we keep

transition: the significance is assessed by a Zesaby,
o
|ad|

those with Zqp1;



In summary, we select those residue pairs thatfgdtie above two conditions and keep them as
a pool of pair-wise distance constraints for furttesting. The pair-wise distance constraints used
for the later testing can only be obtained frons thie-generated pool. Of course, in practice,
when only the initial crystal structure is knowhijst pool of pair-wise distance constraints is

obtained by experiments.

4. Test protocol:
We propose the following two procedures to testat®uracy and robustness of the method:
a. ldeal test:

We use the top N residue pairs (ranked by the wigie- distance changéd|) as the input of
distance constraints (N=1, 2, ..., 10), then we camplue response displacement and its overlap
with the measured conformational change to askegserformance.

We define the success criteria as follows: A tesieds said to successfully pass the ideal test if
there exists N10 such that using the top N pairs as input resales higher or similar overlap
with the measured conformational change than arglesmode.

b. Non-ideal test: including the following two tests

Test 1: We randomly pick N pairs from the pool igigficant pairs as generated above. For a
given N (N=1, 2, ..., 10), we repeat the calculat®0 times with different randomly
selected N pairs and then compute the average tamdlasd deviation of the computed
overlaps. The average assesses the average perterwhile the standard deviation gives
the robustness of the method.

Test 2: We introduce a random fractional errorl¢feing the uniform distribution between —
50% and 50%) to the new pair-wise distance valkes.a given input of top N pair-wise
constraints, we repeat the calculations 100 timiéls efferent inaccurate values of distance
constraints and then compute the average and sthddaiation of the overlaps. The average
assesses the average performance while the staddwiation gives the robustness of the
method.

We define the success criteria as follows: A testecis said to successfully pass the non-ideal
tests if there exists M0 such that: a. the average overlaps obtained tihenabove two tests are
both higher than or similar to the maximal overegtween the measured conformational change
and any single mode; b. the standard deviatioruishnsmaller than the average overlap.

5. Test cases

We test this method for a list of protein pairshwitoth structures available in PDB. 14 pairs in

the list are obtained from a recent study (TamaSatejouand, 2001): we only exclude 4 pairs
for reasons such as the lack of dominance of l@gtfency modes among the lowest 10 modes.
We then supplement by 8 additional pairs of pratéiom our own studies.



Results and Discussion

We now perform a systematic test of the accuraay rabustness of the method. For the test
cases, we select a list of protein transition paingre both the initial and the end structures are
available in Protein Data Bank (Table 1). Thesdgins vary significantly in size and function,
and their conformational changes involve hinge Io@ndr shear motion (as classified in Gerstein
and Krebs, 1998). The diversity of the test caseslifates a strict test on the generality of the
method.

For the purpose of method testing, we generateod giduseful’ pair-wise distance constraints
(see Method), and we require that the pair-wistadte constraints as input to our method can
only come from this ‘pre-generated’ pool.

Then we run the following two tests:
1. Ideal test:

To demonstrate the best performance this metho@ian assume we are given the top N pairs
(sorted bydd|: the pair-wise distance change during the ttiamyifrom the pool as the input of
distance constraints (N=1, 2, ... 10). For those Xopair-wise constraints, we compute the
response displacement as defined in Eq (5), andl ¢ca&ulate its overlap with the measured
conformational change. We compare it with the makioverlap between any single mode and
the measured conformational change. We then asKotloaving two questions to assess the
performance: 1. What is the minimum N needed taaggtilar or higher overlap than any single
mode? 2. What is the highest overlap attained asmr¢s from 1 to 10. We record these two
numbers in Table 2 for all the test cases.

A test case is said to successfully pass the idsalif our method obtains a better or similar
performance than any single mode (see Method f@aildef the success criteria).

2. Non-ideal test:
We design the following two non-ideal tests to asdbe robustness of our method:

a. In practice, there is no guarantee that we agnpgecisely the top N pair-wise distance
constraints from the pre-generated pool as assumelde ideal test. So it is natural to ask
whether the performance is sensitive to differdmdices of pair-wise distance constraints from
the pool as input. To address this question weaiatyg pick N pairs from the pool of significant
pairs and evaluate statistically the performanceéhef method (Method). For a given N (N=1,
2, ... 10), we repeat the calculation with differemndomly selected N pairs and then compute
the average and standard deviation of the computedaps. The average assesses the average
performance while the standard deviation givesrdiristness of the method. These results are
also recorded in Table 2.

b. Another practical issue is that the experiméntadeasured pair-wise distances for the end

state are inaccurate. Therefore it is criticaletst if our method is robust against such inaccuracy
We introduce a random fractional error (Method)tlie new pair-wise distance values. For a
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given input of top N pair-wise constraints (definaedthe ideal test), we repeat the calculations
with different inaccurate values of distance cauists and then compute the average and
standard deviation of the overlaps. The averagesass the average performance while the
standard deviation gives the robustness of the adeffhese results are also recorded in Table 2.

A test case is said to successfully pass the neal-igsts if our method ‘statistically’ obtains a
better or similar performance than any single m@@e Method for details of the success criteria).

Then we go into a detailed discussion of the resililbclearly analyzehe results, we classify the
22 test cases into the following three categories:

1. Successful cases with single mode dominance

Among the test cases that successfully pass betidéal and non-ideal tests, for 12 of them (see
the upper part of Table 2 for details) there isirgle mode that dominates the measured
conformational change. Among these 12 cases, ordye3dominated by precisely the lowest-
frequency mode (mode #1) and 4 by th&lawest-frequency mode (mode #2); the remaining 5
have their dominant mode ranging from mode #3 t¢F&ble 2). Therefore, even for cases with
single mode dominance, a simple choice of the dantimode based solely on lowest frequency
is generally not feasible.

For example, the transition (1dét1mdt) is dominated by mode #2 (overlap=0.564).dthlihe
ideal and non-ideal tests, our method captures mi@des the dominant mode (see Figure 2. The
non-ideal test with different choices of input gaieveals high robustness with slightly reduced
performance (average overlap ~ 0.7, and standasidta® <0.1). It is noted that the robustness
against errors in the input distance constraintgety strong: for N=1...10 pairs, the standard
deviation is virtually zero.

Similar results are obtained for the other two eplast (lypt—-> 1lyts, see Figure 3) and
(2lac> llst, see Figure 4). In both transitions, both el tests reveal very robust performance
(small standard deviation).

To summarize, for the 12 successful cases witHesimpde dominance we find that our method
correctly captures the dominant mode that also dates the predicted conformational change
and thus achieves a comparable or better perfornidan any single mode alone. Depending on
different cases, although the non-ideal test gbegsewhat reduced performance (with more pairs
needed) than the ideal test, it is generally robuastthe results are not sensitive to the choites o
pairs from the pool and the accuracy of the inpsifatice constraints. The robustness against the
latter is particularly impressive: in 11/12 cast#® standard deviation is << 0.1 (except for
transition lavr> lavh).

2. Successful cases with multi-modes dominance
Among the test cases that successfully pass betld#al and non-ideal tests, for 5 of them (see

the lower part of Table 2) there are two modes tt@hinate the measured conformational
change.
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We discuss these cases in details as follows.

Transition (9aat> lama) is dominated by mode #6(overlap=0.515) af{dverlap=0.459). In
the ideal test, our method (with pairs as input) can capture mode #6 as the doinmade
together with mode #1. This is not surprising beeamode #1 has frequency (0.000326) is much
lower than mode #6 (0.057652) which favors its @neg in the response displacement. The non-
ideal test reveals reasonable robustness withréiffechoices of pairs as input (average overlap
~0.5, standard deviatior0.15 for N>4 pairs). The robustness against errors in thet idistance
constraints is relatively strong (for N=1...10 patfs standard deviation is alwag8.1)

Transition (1cll-=> 1ctr) is dominated by three modes: #3(overlap=0).3#4(overlap=0.380) and
#5(overlap=0.405). Our method captures mode #Beaddminant and #4 as sub-dominant mode
(see Figure 1). This explains its high overlap @90with the measured conformational change.
The non-ideal test with different choices of pagseals good robustness with slightly reduced
performance (average overlap ~ 0.5, and standasidta® <0.1). It is noted that the robustness
against errors in the input distance constraintexsemely strong: for N=1...10 pairs, the
standard deviation is always <0.003.

Transition (Lomp> lanf) is dominated by mode #2(overlap=0.675) ah{@werlap=0.650). Our
method correctly captures mode #2 as dominant mademode #1 as subdominant mode. The
non-ideal test with different choices of pairs daff@lmost as good performance as the ideal test
(average overlap ~0.8, and standard deviatio?) for >4 pairs as input. It is noted that the
robustness against errors in the input distancstnts is also very strong: for N=1...10 pairs,
the standard deviation is always <0.02.

Transition (1dfl> 1kk7) is dominated by mode #1(overlap=0.518) aB@bwerlap=0.475), both
of which are correctly captured as dominant or safidant mode by this method. The non-ideal
test with different choices of pairs as input résesdightly reduced performance than the ideal
test and good robustness (average overlap ~0.5t@u8dard deviation0.2) for N>5 pairs. The
robustness against errors in the input distancstants is relatively strong (for N=1...10 pairs,
the standard deviation is alway8.1).

Transition (lvom~> 1mma) is dominated by mode #1(overlap=0.558), #2(@verlap=0.371).
Both modes are captured by our method as dominasiilmominant modes. The non-ideal test
with different choices of pairs as input revealsewhat reduced performance than the ideal test
and reasonable robustness (average overlap ~Q.5t@rglard deviatiof0.2) for N>5 pairs. The
robustness against errors in the input distancstnts is very strong (for N=1...10 pairs, the
standard deviation is alway§.01).

To summarize, in the above 5 successful cases etirath correctly captures one or both of the
dominant modes that also dominates the predictedbnoational change and thus achieves a
comparable or better performance than any singléenadone. Although the non-ideal test gives
somewhat reduced performance than the ideal tet (more pairs needed and a small variation
in the overlap), it is generally robust and thaulessare not sensitive to the choices of pairs from
the pool and the accuracy of the input distancesttamts. The robustness against the latter is
particularly impressive.

3. Unsuccessful cases
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There are 5 unsuccessful cases that are discusselibavs:

Transition (8adh> 6adh): there is a dominant mode #3 (overlap=0.88J; the ideal test gives
reasonable performance (although the overlap @.3@®ner than 0.68 of mode #3); and the non-
ideal test gives reduced performance with good stifass against both the choices of pairs from
the pool and the inaccuracy of the input distanoestraints. Therefore this case is actually
partially successful.

Transition (3enk> 7enl): there is a weakly dominant mode #1(over®ap45). We obtain good
ideal test result but worse non-ideal test redtiibagh with good robustness.

In the remaining 3 cases (including: 4etr 5dfr, 1hhp—> 1ajx, and 1hil> 1him) the ideal test
result is good but the non-ideal test fails to grebust results (the standard deviation is
comparable to the average overlap): namely, thimpeance is sensitive to either the choices of
pairs or errors of distance constraints or both.nde that the size of the pool of significant pair
is relatively small for these 3 cases, which magultein relatively strong susceptibility to the
contribution of each individual pair and therefazause weak robustness. Indeed, for the
transitions 1hhp> 1ajx and 1hil-> 1him, when we enlarge the pool size the robustiess
significantly improved (data not shown).

Summary

As indicated by the results of the ideal test (€aD), for most of the test cases (21 out of 22), by
using just a small numbex0) of pair-wise distance constraints, we have inbtha good
overlap between the computed conformational chargkthe measured one, which is higher
than (or close to) the maximal overlap between simgle mode and the measured one. In
particular, in cases where more than one normalenttmminate, the predicted conformational
change can correctly capture all or some of theidanmt modes and give a better overlap than
any single mode. We also find that increasing numie constraints generally does not
significantly improve the overlap values.

The results of the non-ideal test are also encaugador most of the test cases (17 out of 22),
slightly more constraints are needed to match tedopmance of the ideal test, and the
robustness against different choices of pairs oistraints and errors in the values of distance
constraints is generally strong. The dependenctn@mumber of constraints is stronger than in
the ideal test: the average overlap improves aadvétiance of the overlap decreases as more
constraints are used. Therefore, for practical afsthis method, we need to use slightly more
constraints than suggested by the ideal test, wihghoves not only the average performance but
also the robustness.

It is noted that the dependence on the accuraclstdnce constraints is very weak for most of
the test cases even for a relative large fractieralr (up to 50%). This is critical to the praatic

application of this method with experimentally ded distance constraints that are usually of
limited accuracy.

Conclusion
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In conclusion, we have developed an ENM-based mdethat predicts the conformational
changes of a protein complex given the initialestatystal structure together with the input of a
small set of pair-wise distance constraints forahd state. The predicted conformational change,
which is a linear combination of multiple low freency normal modes, is computed as a
response displacement induced by a quadratic pettan to the Hamiltonian of the elastic
network that incorporates the given distance cairgs. For most of the test cases we studied, we
find that the computed response displacement q@&neell with the measured conformational
change, when only a handful of pair-wise constsa@ii0) are used; in several cases even a
single constraint has already yielded very goodltesThis method generally performs better
than using any single normal mode, especially sesavhere more than one mode dominate the
transition. The robustness of the method agairitgrdint choices of residue pairs and errors in
the values of distance constraints has also bemmrsto be fairly strong.

The success of this method lends support to thieadrroles of collective low-frequency motions
in facilitating bio-molecular functions. The easwdaaccurate triggering of such collective
mode(s) by manipulating just a small number ofraaténg pairs of residues may be essential to
the mechanism of allostery initiated by ligand liirgdor protein-protein interactions.

Compared with other computational methods thaizetihe distance constraints to model protein
structures (for example, using molecular dynamicgsigtion with additional energy terms from
the constraints, as implemented in CHARMM by Broadtsal. 1983), this method has the
following advantages: first, its implementation fest and easy; second, it is free from any
trapping in local minima; third, it is applicable targe protein complexes. Furthermore, the
conformational change predicted by this methodseawe as a zero-order approximation that can
be further refined by more sophisticated methods éxample, using dynamical simulations
based on all-atom potentials).

Before ending, we acknowledge that there is linatatand inaccuracy in the ENM and there
exist some protein conformational changes that @tana@ described by the low-frequency normal
modes (for example, some local structural changis)ever, the basic idea proposed here is not
limited to the ENM and it can be applied to themal modes analysis of other force fields like
the all-atom potentials.

For future work, we will apply this method with tlegperimentally derived distance constraints
(for example, from NMR or other optical spectrosggmobes) to the analysis of protein
conformational changes toward transient states dtatdifficult to capture by NMR or X-ray
crystallography.
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Tables and figure captions

Table 1. Information about the 22 pairs of protein struesuas test cases: the PDB codes of the
corresponding pair of initial and end crystallodr@pstructures.

Prot ei n nanes # residues PDB codes

Al cohol dehydrogenase 373  8adh, 6adh
Annexin V 317 lavr, lavh
Aspartate am notransferase 401 9aat, lanm
Cal nmodul i n 144 lcll, 1lctr
Di hydrof ol at e reduct ase 159  4dfr, b5dfr
Di phtheria toxin 523 1ddt, 1ndt
Enol ase 436 3enl, 7en

Hl V-1 protease 99 lhhp, 1ajx
I mrunogl obul i n 418 1hil, 1him
Lactoferrin 691 11 fh, 1lfg
LAO bi nding protein 238 2l ao, 1l st
Mal t odextrin binding protein 370 lonp, 1lanf
Thym dyl ate synt hase 264 3tnms, 2tsc
Tyrosi ne phosphat ase 278 lypt, 1lyts
Scal |l op myosin sl 772 1dfl, 1kk7
di ctyostelium nyosin 730 lvom 1mma
baci | | us DNA pol yrner ase 580 11 3s, 1lv5
DNA pol yner ase beta 331 lbpx, 1lbpy
rb69 DNA pol ynerase 897 li h7, 1ig9
Tag DNA pol ynerase 528 2kt q, 3ktq
ras p21 protein 169 4921, 5p21
Tr ansduci n- al pha 314 ltag, 1tnd
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Table 2. Summary of results from both ideal and non-idesis. For each test case, the first row
shows the minimal number of pairs needed to matehmaximal overlap between any single
mode and the measured conformational change; tumdeow shows the number of pairs when
the maximal overlap between the computed and tlesuaned conformational changes is obtained.
For the two non-ideal tests, both the average apednd its standard deviation (inside
parenthesis) are shown. For the ideal test, thd tow shows the corresponding result for the
‘hard constraint’ method as a comparison.

PDB codes nmode#(overl ap) pool i deal test result non-ideal test result
size #pairs overlap test 1 test 2
#pairs overlap #pairs overl ap
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Figure 1. Summary of results for transition (1e} 1ctr). Panel a shows the overlap between the
computed and the measured conformational changesthes number of pair-wise distance
constraints. Panel b (panel c) shows the overlapdsn the computed conformational change and
mode #3 (#4) vs. the number of pair-wise distarmestaints. Line with pluses: result for the ideal
test; horizontal line: the maximal overlap betweany single mode and the measured
conformational change; x-marks with error barsultefeor the non-ideal test 1, where the error bar
shows 1 standard deviation.

Figure 2. Summary of results for transition (1dét 1mdt). Panel a shows the overlap between the
computed and the measured conformational changesthes number of pair-wise distance
constraints. Panel b shows the overlap betweendimputed conformational change and mode #2
vs. the number of pair-wise distance constrainise Lwith pluses: result for the ideal test;
horizontal line: the maximal overlap between amglk mode and the measured conformational
change; x-marks with error bars: result for the -idwal test 1, where the error bar shows 1
standard deviation.

Figure 3. Summary of results for transition (1ypt 1yts). Panel a shows the overlap between the
computed and the measured conformational changesthes number of pair-wise distance
constraints. Panel b shows the overlap betweendimputed conformational change and mode #6
vs. the number of pair-wise distance constrainise Lwith pluses: result for the ideal test;
horizontal line: the maximal overlap between amglk mode and the measured conformational
change; x-marks with error bars: result for the -idwal test 1, where the error bar shows 1
standard deviation.

Figure 4. Summary of results for transition (2la®» 1lst). Panel a shows the overlap between the
computed and the measured conformational changesthes number of pair-wise distance
constraints. Panel b shows the overlap betweendimputed conformational change and mode #1
vs. the number of pair-wise distance constrainise Lwith pluses: result for the ideal test;
horizontal line: the maximal overlap between amgl mode and the measured conformational
change; x-marks with error bars: result for the -iwal test 1, where the error bar shows 1
standard deviation.
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